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of Ml and M3 are influenced by this phenome
non. 

5. The transition might actually be marked 
by a small first-order change in entropy, volume, 
and some of the components of strain, so that the 
derivatives of these quantities on approaching 
the transition might never get large enough to 
rigorously satisfy the asymptotic relations de
rived for a ,\ transition (see Figure 9). This 
hypothesis is supported by the existence of 
hysteresis in the transition, for if there were a 
continuous series of states in which quartz were 
stable as the phase boundary was traversed, it 
is difficult to see how there could be any 
hysteresis at all. 

This hypothesis is further supported by the 
character of the DTA peaks observed when 
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squeezing the specimens through the transition 
(see section on experimental procedure). If the 
a-f3 inversion were a ,\ transition, then the 
cause of the DTA peaks would be the sudden 
increase of heating due to compression as the 
transition was approached and crossed. The in
crease in temperature under adiabatic conditions 
owing to compression perpendicular or parallel 
to the C axis differs, however, so that the ratio 
of the two effects is given by 

= TVal/TVa3 = al 
C" C. a3 

yet we could not distinguish any systematic 
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Fig. 9. Two models for the a-fJ inversion in quartz, which differ only in the behavior of 

the extensive parameters as a function of the intensive parameters near the transition: in 
(I), a A transition, the variation is continuous and a vertical tangent occurs at the transition, 
whereas in (2), the model we prefer, a first-order discontinuity terminates the rapid rate of 
change of V and S at the transition before a vertical tangent is reached (case 5 in text). 
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difference in DTA peak height for the two orien
tations. It is unlikely that a compensating direc
tional anomaly in the thermal conductivity of 
quartz, even if it existed, could obscure any 
significant directional difference in heat effect, 
because it is probable that heat generated in 
the specimen would be conducted away both 
radially and longitudinally under our experi
mental conditions. If the transition were first
order, however, then a latent heat would be 
released as the specimen was squeezed through 
the transition, and this heating would not de
pend particularly on the orientation of the crystal 
to the compression. Another pair of observa
tions, that the height of the DTA peak was not 
affected by the fivefold range of squeezing rate 
used in these experiments, whereas the position 
of the peak lagged slightly behind the compli
ance maximum at the highest rate, might also 
be explained by assuming that the hysteresis 
holds up the first-order transition so that the 
latent heat is released more suddenly when it 
finally occurs. 

In conclusion, we tend to favor the last .of 
these possibilities, but to prove or disprove this 
and to resolve the many troubling conflicts 
touched upon earlier, higher quality measure
ments of a'J, Slju" (by both static and dynamic 
means), Cp , and M", on the same crystal and 
very near the transition will probably be needed. 

The a,-f3 Inversion Treated as a Coherent 
First-Ordel' Transition 

We gave indirect reasons above that suggest 
to us that the a-f3 inversion may involve a 
small first-order component, Some workers ac
tually claim to detect discontinuities in the 
volume and entropy at the transition, but these 
are difficult to establish on account of their 
small magnitudes and the rapid rate of change 
of these quantities in the neighborhood of the 
transition. Thus, Majumdar et 01. [1964] give 
AV ~ 0.11 ± 0.Ql5 cm"/mole and As ~ 0.10 ± 
0.02 cal/mole °C, which, when substituted into 
the Clapeyron equation 

dT a-ti dP = AV/ AS (10) 

yield an estimate for the slope of 26 ± 6°C/kb, 
whereas Berger et 01. [1965, 1966] give AV ~ 
0.15 ± 0.01 cms/mole and As ~ 0.15 ± 0.04 
cal/mole °C, which yield an estimate of 24 ± 
6°C/kb. On the other hand, Sinel'nikov's [1953] 

upper bound of 0.003 cal/mole °C for As would 
imply Av no larger than 0.0033 cma/mole to 
yield the experimentally observed slope of 
26°C/kb from (10). It is difficult to resolve this 
and other inconsistencies of the data in the 
literature. 

We shall assume the transition is first-order, 
however, and that it is characterized by a re
versible first-order discontinuity in the strain 
that we call the transformation strain. As 
pointed out in the Introduction, this latter fea
ture is tied to the notion that the transition 
mechanism involves a coherent interface between 
the two phases, so that the displacement vector 
for the quartz as it undergoes the phase trans
formation is a continuous function of position. 
If the tran formation strain A€u is small enough 
so that the approximations of infinitesimal 
strain theory are valid, the generalization of the 
Clapeyron equation applicable to the transition 
is (equation C6, Appendix C) 

= Vo AEkl/ As (11) 

where Vo is the molar volume in the reference 
state of strain and As is the entropy per mole 
associated with the transition. 

As shown in Appendix C, (11) is in direct 
analogy to the formulas (7) and (8) for the 
slope of the boundary of a A transition j more
over, it reduces to the conventional Clapeyron 
equation (10) for hydrostatic pressure. In the 
general case of non hydrostatic stress, (11) shows 
that shear stresses will be important thermo
dynamic variables in determining the field of 
stability of a polymorph, if A€u includes sig
nificant shear strains. In fact, if the transforma
tion strain involves a change in shape but not 
of volume, the transition temperature will be 
independent of pressure but not of the indi
vidual components of stress. 

Applying (11) to quartz and choosing the 
coordinate axes as in Figure 4, we obtain ex
pressions for the increase of transition tempera
ture owing to compression perpendicular or 
parallel to the C axis, respectively, in terms of 
the relative discontinuity of the lattice param
eters Aa/a or AC/C in the same direction: 

Ml = VO AEt! As = vo(Aa/ a)/ As (12a) 

Ma = Vo AEa/ As = vo(!l.c/c)/ As (12b) 


